cudf.DataFrame.rename#
- DataFrame.rename(mapper=None, index=None, columns=None, axis=0, copy=True, inplace=False, level=None, errors='ignore')#
Alter column and index labels.
Function / dict values must be unique (1-to-1). Labels not contained in a dict / Series will be left as-is. Extra labels listed don’t throw an error.
DataFrame.rename
supports two calling conventions:(index=index_mapper, columns=columns_mapper, ...)
(mapper, axis={0/'index' or 1/'column'}, ...)
We highly recommend using keyword arguments to clarify your intent.
- Parameters
- mapperdict-like or function, default None
optional dict-like or functions transformations to apply to the index/column values depending on selected
axis
.- indexdict-like, default None
Optional dict-like transformations to apply to the index axis’ values. Does not support functions for axis 0 yet.
- columnsdict-like or function, default None
optional dict-like or functions transformations to apply to the columns axis’ values.
- axisint, default 0
Axis to rename with mapper. 0 or ‘index’ for index 1 or ‘columns’ for columns
- copyboolean, default True
Also copy underlying data
- inplaceboolean, default False
Return new DataFrame. If True, assign columns without copy
- levelint or level name, default None
In case of a MultiIndex, only rename labels in the specified level.
- errors{‘raise’, ‘ignore’, ‘warn’}, default ‘ignore’
Only ‘ignore’ supported Control raising of exceptions on invalid data for provided dtype.
raise
: allow exceptions to be raisedignore
: suppress exceptions. On error return original object.warn
: prints last exceptions as warnings and return original object.
- Returns
- DataFrame
Notes
- Difference from pandas:
Not supporting: level
Rename will not overwrite column names. If a list with duplicates is passed, column names will be postfixed with a number.
Examples
>>> import cudf >>> df = cudf.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]}) >>> df A B 0 1 4 1 2 5 2 3 6
Rename columns using a mapping:
>>> df.rename(columns={"A": "a", "B": "c"}) a c 0 1 4 1 2 5 2 3 6
Rename index using a mapping:
>>> df.rename(index={0: 10, 1: 20, 2: 30}) A B 10 1 4 20 2 5 30 3 6